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Entropy Production and Transports in a Conservative
Multibaker Map with Energy
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For a previously introduced conservative multibaker map with energy, the
Gaspard�Gilbert�Dorfman entropy production of the stationary state induced
by the flux boundary condition is calculated and the entropy production is
shown (i) to be nonnegative, (ii) to vanish in the fine-grained limit for finite
chains, (iii) to take the phenomenologically expected value in the middle of the
chain and to deviate from it near the boundaries, and (iv) to reduce to the
phenomenological expression in the scaling limit where the lattice site n # Z and
time t # Z are scaled respectively as n=L!X and t=L{T and the limits of
L! � +� and L{ � +� are taken while keeping the diffusion coefficient D=
lL{ �L2

! constant, l being the transition rate of the model. The mass and heat
transports are also studied in the scaling limit under an additional assumption
that the edges of the chain are in equilibrium with different temperatures. In the
linear heat transport regime, Fourier's law of heat conduction and the ther-
modynamic expression of the associated entropy production are obtained.

KEY WORDS: Nonequilibrium states; coarse-grained entropy production;
singular measure; driven system; dynamical chaos; transport law.

1. INTRODUCTION

Understanding the microscopic entropy production is a long-standing
problem in statistical mechanics.(1, 2) Recently, stimulated by progress in
dynamical systems theory, the problem has been reinvestigated particularly
for hyperbolic systems.(2�11) For this purpose, multibaker maps and their
generalizations are used as prototypes of hyperbolic systems.(3, 6�13) Such an
approach is expected to provide a useful information about many-body
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systems because of the Gallavotti�Cohen hypothesis, (14) which asserts that
the microscopic dynamics of an N-body system is of hyperbolic character
for sufficiently large numbers N of particles.

A multibaker map(3, 12, 13) is a lattice extension of the conventional
baker transformation. It is a hyperbolic dynamical system, exhibits deter-
ministic diffusion and has been used to study transport properties. While
most of the proposed multibaker maps describe one kind of transports
which is related to the probability conservation and is usually identified as
the mass transport, several extensions are possible to describe two or more
kinds of transports. In an extension by Ma� tya� s, Te� l and Vollmer, (10) the
dynamics was not changed and a ``temperature'' field and a related ``heat''
flow were introduced in addition to the ``mass'' density. These authors have
shown that their model describes ``mass'' and ``heat'' transports with cross
effects and that the entropy production in their sense is consistent with
nonequilibrium thermodynamics. On the other hand, in the conventional
statistical mechanics, the whole system is considered to be conservative and
the heat transport is related to the conservation of energy, which is a
dynamical variable, but not a field defined on the phase, space. So, we
extended a multibaker map by introducing a new coordinate corresponding
to kinetic energy. Then, we required the multibaker map to be volume-
preserving and time-reversal symmetric, and to conserve the sum of the
``kinetic energy'' and an ``external potential energy.''(9) Note that the ``kinetic
energy'' is a mere phase-space coordinate of the map and the ``external
potential energy'' is a mere phase-space field controlling the map
parameters (i.e., the transition rates of the multibaker map). For the
reasons to be explained in the next section, these quantities can be con-
sidered as the ``kinetic'' and ``external potential'' energies of our model,
respectively.

In ref. 9, we showed that our model admits nonequilibrium stationary
states carrying nonvanishing flows, which can be described by fractal dis-
tribution functions. On the basis of the aforementioned identifications, the
mass and energy flows were calculated by using the fractal distribution
functions and these flows were found to obey the phenomenological trans-
port laws such as Fick's law. Moreover, in an appropriate scaling limit, (7, 15) 3

the coarse-grained entropy production in the sense of Gaspard(6) and
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3 In ref. 9, following Vollmer, Te� l and Breymann (VTB), (7) we considered the scaling limit
where the time step { and lattice spacing d tend to zero while keeping the diffusion coefficient
D=l d 2�{ constant, where l stands for the transition rate with no external field. In this
paper, we consider the scaling limit in the sense of Bunimovich and Sinai (BS), (15) where
the lattice site n and time t are scaled respectively as n=L! X and t=L{ T and the limits
L! � +� and L{ � +� are taken while keeping D=lL{ �L2

! constant. The two scaling
limits are mathematically equivalent via the replacements { W 1�L{ and d W 1�L! .



Gilbert�Dorfman(8) was investigated and shown to take an expression con-
sistent with nonequilibrium thermodynamics.(9) However, in ref. 9, our
treatment remained limited to a rough partition into relatively large cells
and no spatial variation of the ``temperature'' was considered.

The aim of the present paper is to investigate in detail the cell-size
dependence of the Gaspard�Gilbert�Dorfman entropy production for
the nonequilibrium stationary states and to derive systematically the
thermodynamic behaviors for mass and heat transports, including ``tem-
perature'' variations.

The paper is organized as follows. In Section 2, we summarize the
known results on the nonequilibrium stationary states of our multibaker
model with energy. The entropy production is calculated in Section 3. The
mass and heat transports are derived in Section 4. Conclusions are drawn
in Section 5.

2. MULTIBAKER MAP WITH ENERGY

The multibaker map with energy introduced in ref. 9 is a caricature of
the periodic Lorentz gas and was constructed on the basis of the following
observation: For the two-dimensional (2d ) periodic Lorentz gas without
external field, the dimension of the phase space is four: two dimensions for
the position and two for the momentum of the moving particle. Each
trajectory of the particle can be fully determined by the coordinates of the
particle at the successive collisions, which are given by the label of the scat-
terer, the scattering position % of the particle on the scatterer, the direction
� of the particle velocity just before the scattering and the magnitude of the
particle velocity (or equivalently the kinetic energy of the particle).
Without external field, the kinetic energy is conserved and can be omitted
as dynamical variable. In this case, the dynamics of the Lorentz gas is con-
trolled by a map defined on an array of (%, �)-rectangles and this map
resembles the usual multibaker map.(3)

Let us now consider the 2d Lorentz gas under an external field where
the external potential is nearly constant on each scatterer. In this case, the
trajectory can be determined by the coordinates at the successive collisions
as before, but the kinetic energy of the particle is necessary to specify since
the kinetic energy takes a different value when the particle hits a different
scatterer, as a result of the external potential and the conservation of
energy. Consequently, the dynamics is controlled by a map defined on an
array of pillars, where the vertical direction is the kinetic-energy axis and
the horizontal section represents a (%, �)-rectangle at constant kinetic
energy. The multibaker map with energy introduced in ref. 9 is designed in
order to mimic this map.
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Fig. 1a. Schematic representation of the phase space 1. The sectional area at ``kinetic
energy'' E depends on E. The arrow represents the applied field and hatched squares
corresponds to a constant total energy surface.

The phase space of our multibaker model is thus a chain 1 of three-
dimensional cells as shown in Fig. 1(a):

1=[(n, x, y, E ) | n # Z, E # R+, 0�x�a(E ), 0� y�a(E )] (1)

where Z and R+ stand for the sets of integers and of positive real numbers,
respectively, and a(E ) is a positive function of E. In our analogy with the

Fig. 1b. The multibaker map BF on the constant total energy surface.
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Lorentz gas under an external field, the variables n, x, y and E correspond
respectively to the label of a scatterer, the angles % and � (or � and %) and
the kinetic energy, and a(E )2 represents the area of a section of each cell
at constant ``kinetic energy.'' From now on, the analogy with the Lorentz
gas will no longer be used and we shall consider the possibility of a general
E-dependence of the sectional area a(E )2. As shown in ref. 9, the sectional
area must have the form a(E )2 B e2E in order for the map to satisfy the
three following conditions: (i) conservation of the total energy, (ii) inver-
tibility of the map on 1 and (iii) independence of the transition rates from
the ``kinetic'' energy E.

In the case of a constant applied field F, the map BF is given by [cf.
Fig. 1b]

BF (n, x, y, E)

=

\n&1,
x

l +eF , l +eFy, E+F+ , 0�
x

a(E )
�l &

\n,
x&l &a(E )

s
, sy+l +a(E ), E+ , l &�

x
a(E )

�1&l +

\n+1,
x&(1&l +) a(E )

l &e&F , [l &y+(1&l &) a(E )] e&F, E&F+ ,

1&l +�
x

a(E )
�1

In these equations, l \#2l�(1+e\2F ) is the transition rate from the n th
cell to the (n\1)th cell and s#1&2l is the self-transition rate, where
l # (0, 1�2] is a real parameter.

We introduce the partially integrated distribution function Gt at fixed
total energy E and time t which is evolved from the initial distribution \0 :

Gt(n, x, y, E )#|
y

0
dy$ \0(B&t

8 (n, x, y$, E&Fn)) (2)

Its evolution equation is derived from the definition of BF . It is convenient
to express Gt in terms of the rescaled coordinates !#x�an(E ) # [0, 1] and
'#y�an(E ) # [0, 1] with an(E )=aeEe&Fn, which will be denoted as G� t :
G� t(n, !, ', E )#Gt[n, !an(E ), 'an(E ), E]. Then, the evolution equation of
the partially integrated distribution(9) reads as

G� t+1(n, !, ', E )=l &e&FG� t \n+1, l &!,
'

l + , E+ (3)
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for ' # [0, l + );

G� t+1(n, !, ', E )=l &e&FG� t(n+1, l &!, 1, E )+sG� t \n, s!+l &,
'&l +

s
, E+

(4)

for ' # [l +, 1&l &); and

G� t+1(n, !, ', E )=l &e&FG� t(n+1, l &!, 1, E )+sG� t(n, s!+l &, 1, E )

+l +eFG� t \n&1, l +!+1&l +,
'&1+l &

l & , E+ (5)

for ' # [1&l&, 1].
Under the flux boundary conditions

G� t(&1, !, ', E )=\&(E ) a(E ) eF'
(6)

G� t(N+1, !, ', E )=\+(E ) a(E ) e&(N+1) F'

Eqs. (3)�(5) were shown to admit a unique stationary solution G� � which
does not depend on !(9). The corresponding probability distribution
6+�(n, E ) per energy and per site is

6+�(n, E )=a(E )2 e&nF {(\+(E )&\&(E ))
e&(N+1) F sinh(n+1) F

sinh(N+2) F

+\&(E ) e&nF= (7)

and it carries a nonvanishing probability flow Jn | n+1(E ):

Jn | n+1(E )#l +6+�(n, E )&l &6+�(n+1, E )

=&l(\+(E )&\&(E ))
a(E )2 e&NF tanh F

sinh(N+2) F
(8)

Note that the flow Jn | n+1(E ) from the n th site to the (n+1)th one does
not depend on n because of the probability conservation. In terms of those
quantities, we have

an(E ) G� +�(n, ', E )=6+�(n, E ) '&
Jn | n+1(E )

l
.n(') (9)
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where .n is defined as the unique solution of the functional equation

l &.n+1 \ '
l +++

l
l + ', 0�'�l +

.n(')={s.n \'&l +

s ++l, l +�'�1&l & (10)

l +.n&1 \'&1+l &

l & ++
l

l & (1&'), 1&l & �'�1

with the boundary conditions .&1(')=.N+1(')=0.

3. ENTROPY PRODUCTION

As observed in ref. 6, because of the fractality of the nonequilibrium
stationary states, the Gibbs entropy does not exist for infinitely large
systems and the coarse-grained entropy would provide a microscopic
entropy for open conservative systems. Here, in order to deal with a parti-
tion consisting of cells of different sizes, we adopt a slightly modified defini-
tion proposed by Gilbert and Dorfman.(8) However, contrary to ref. 8, we
do not assume that the partition is generating and rather we follow the line
of thoughts of ref. 6 for the following reason: As discussed in ref. 12, the
multibaker map under the flux boundary condition (6) can be embedded
into a conservative system of scattering type. Such a system is hyperbolic
only on the fractal repeller, (3, 16) but not on the whole phase space because
of the free motion. Accordingly, there is no generating partition covering
the whole phase space. However, the measure associated with stationary
state G� +� is supported by the whole phase space. Hence, it is not
appropriate to use the generating partition to calculate a coarse-grained
entropy for the state G� +� .

For an arbitrary partition [Dj ] of the phase space, the coarse-grained
entropy of a set A with respect to a measure & associated with G� +� is given
by ref. 8:

S(A : [Dj ])# :
Dj/A

&(D j ) ln
+0(Dj )
&(Dj )

(11)

where +0 is the reference Lebesgue measure and the summation is taken
over all the cells Dj included in a set A. Because BF preserves the measures
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& and +0 , the entropy production generated in one iteration of BF is given
by(6, 8)

2i S(A : [Dj ])=S(A : [Dj ])&S(A : [BFD j ]) (12)

In ref. 9, the entropy production of the k th cell Ck was calculated with the
aid of a partition consisting of relatively large cells. Here we reinvestigate
this calculation by using arbitrarily fine partitions and we extend our
results.

We introduce a partition based on the cylindrical sets �|&m ,..., |l
(E ):

7|&m ,..., |l
(E )# ,

l

j=&m

B& j
F 1|j

(E ) (13)

where |&m ,..., |l # [0,..., N ] and 1n(E )/Cn is a slice at total energy E
with width 2E :

1n(E )=[(n, x, y, E$&nF ) | 0�x�an(E$), 0� y�an(E$), E�E$�E+2E]
(14)

Because of the boundary condition, one has to take into account other
cylindrical sets where at least one of the end symbols |&m and | l is &1
or N+1. In this regard, we call the nonempty cylindrical sets �|&m ,..., |l

(E )
where all symbols |&m ,..., | l belong to [0,..., N ] as type-I (m, l )-sets, those
with |&m=&1 or N+1 as type-II (m, l )-sets and those with |&m #
[0, N ] and |l=&1, N+1 as type-III (m, l )-sets. Note that, for type-II
(m, l )-sets, |l=&1, N+1 or |l # [0,..., N ]. Now, it is easy to show that
a cylindrical set is a rectangle:

7|&m ,..., |l
(E )={(k, x, y, E$&nF ) } x

ak(E$)
# [:l , ; l],

y
ak(E$)

# [#m , $m],

E�E$�E+2E=
where the side lengths are

;l&:l=Pk|0
P|0|1

} } } P|l&1|l (15)
$m&#m=e2F(k&|&m)P|&m |&m+1

} } } P|&2|&1
P|&1k

and Pnm is the transition probability defined by Pn, n=s, Pn, n\1=l \ and
Pnm=0 otherwise.
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Now we consider the kth cell Ck which is a union of 1k(E ): Ck=
�E 1k(E ). It is obvious that, for given integers M and L, the constant-
energy section 1k(E ) is decomposed as

1k(E )= .
|&M } } } |L

7|&M } } } |L
(E ) _ .

M

m=1

.
L

l=1
{ .$

|&m } } } |l

7|&m } } } |l
(E )=

_ .
L

l=1
{ ."

|&M } } } |l

7|&M } } } |l
(E )=

where the first, second and third terms are unions of, respectively, the
type-I (M, L)-sets, type-II (m, l )-sets with m�M, l�L and type-III
(M, l )-sets with l�L contained in 1k (thus, |0=k). Note that, for the
type-II sets, either |l=&1, N+1 6 l<L or &1�|l�N+1 6 l=L.
From (15), the horizontal and vertical sides of the type-I cylindrical set are
found to be smaller than ak(E ) l� L and ak(E ) l� M, respectively, where
l� #max(l \, s). On the other hand, as schematically shown in Fig. 2, the
type-II cylindrical sets may be larger and the type-III sets may be longer

Fig. 2. Cylindrical sets contained in a constant energy surface at the k th cell. For given
integers M and L, there exist three types of cylindrical sets. A type-I set corresponds to a sym-
bolic sequence of the form (|&M , |&M+1 ,..., |L&1 , |L) with |0=k, a type-II set to a
sequence (|&m ,..., |l&1 , |l) with |0=k and |&m=&1 or N+1 and a type-III set to a
sequence (|&M ,..., |l&1 , |l) with |0=k and |l=&1 or N+1. Dotted lines indicate subrec-
tangles indexed by _.
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in the horizontal direction than the type-I sets. Hence, we further divide the
type-II and type-III sets into subrectangles � (_)

|&m ,..., |l
(E ) smaller than the

type-I sets (cf. Fig. 2). In this way, we obtain the desired partition:

[Dj ]#.
E

[7|&M } } } |L
(E ), 7 (_)

|&m } } } |l
(E ) | |&m=&1, N+1 ,

7 (_)
|&M } } } |l

(E ) ||l=&1, N+1] (16)

Then, the coarse-grained entropy (11) of the k th cell is given by

S(Ck : [D j ])=:
E

:
|&M } } } |L

&(7|&M } } } |L
(E )) ln

+0(7|&M } } } |L
(E ))

&(7|&M } } } |L
(E ))

+:
E

:
M

m=1

:
L

l=1

:$
|&m } } } |l

_

&(7(_)
|&m } } } |l

(E )) ln
+0(7 (_)

|&m } } } |l
(E ))

&(7 (_)
|&m } } } |l

(E ))

+:
E

:
L

l=1

:"
|&M } } } |l

_

&(7 (_)
|&M } } } |l

(E )) ln
+0(7 (_)

|&M } } } |l
(E ))

&(7 (_)
|&M } } } |l

(E ))
(17)

where the three terms are, respectively, the contributions from the type-I,
type-II and type-III cylindrical sets and |0=k. Because of (15) and

ak(E )[G� +�(k, $m , E )&G� +�(k, #m , E )]

=6+�(|&m , E ) P|&m|&m+1
} } } P|&1k (18)

+0(7|&m ,..., |l
(E ))

=ak(E )2 ($m&#m)(;l&:l) 2E (19)

&(7|&m ,..., |l
(E ))

=ak(E )[G� +�(|0 , $m , E )&G� +�(|0 , #m , E )](; l&:l) 2E (20)

in the limit of 2E � 0, the first term of (17) reduces to

:
E

:
|&M } } } |L

&(7|&M } } } |L
(E )) ln

+0(7|&M } } } |L
(E ))

&(7|&M } } } |L
(E ))

=:
E

:
|&M } } } |L

6+�(|&M , E ) 2EP|&M |&M+1
} } } P|&1|0

} } } P|L&1|L

_ln
a|&M

(E )2

6+�(|&M , E )

=| dE :
N

i, j=0

6+�(i, E )(PM) i, k (PL)k, j ln
ai (E )2

6+�(i, E )
(21)
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where PM is the Mth power of the transition probability matrix
[Pmn]0�m, n�N .

Since the measure & has a constant density with respect to the
Lebesgue measure +0 in the type-II sets, the ratio of two measures & and
+0 of a type-II subrectangle 7 (_)

|&m } } } |l
is independent of the subrectangle

index _. Thus, the sum in the second term of (17) reduces to the sum over
all type-II sets and can be calculated as the first term. This is also the case
for the third term. We then obtain the entropy at the k th cell:

S(Ck : [D j ])=| dE :
N

i=0

6+�(i, E )(PM) i, k ln
ai (E )2

6+�(i, E )

+ :
M

m=1
| dE :

i=&1, N+1

6+�(i, E )(Pm) i, k ln
ai (E )2

6+�(i, E )
(22)

Note that the final expression becomes independent of L thanks to the
identity: �N

j=0 (PL)k, j+�L
l=1 � j=&1, N+1 (Pl)k, j=1.

Since BF 7|&m } } } |l
(E )=7|$&m&1 } } } |$l&1

(E ) with |$s=|s+1 , the partition
[BF Dj ] corresponds to the (M+1, L&1)-cylindrical sets. Hence, by sub-
stituting M+1 to M in (22), one obtains the entropy S(Ck : [BF Dj ]).
Hence, the entropy production 2i S(Ck : [Dj ]) is

2i S(Ck : [Dj ])=S(Ck : [Dj ])&S(Ck : [BFD j ])=| dE si (k, E ) (23)

where si (k, E ) is the entropy production per energy

si (k, E )= :
N

i=0

6+�(i, E )(PM) i, k ln
ai (E )2

6+�(i, E )

& :
N+1

i=&1

6+�(i, E )(PM+1) i, k ln
ai (E )2

6+�(i, E )
(24)

=& :
N

i=0
{l &6+�(i+1, E ) ln

e&2F6+�(i, E )
6+�(i+1, E )

+l +6+�(i&1, E ) ln
e2F6+�(i, E )
6+�(i&1, E )= (PM) i, k (25)

In deriving (25), we used the recursion relation: l &6+�(i+1, E )+
l +6+�(i&1, E )=2l6+�(i, E ).
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Now we study the properties of 2iS(Ck : [D j ]). Due to the recursion
relation for 6+�(i, E ) and the convexity of ln x, the expression in the curly
bracket of (25) satisfies

l &6+�(i+1, E ) ln
e&2F6+�(i, E )
6+�(i+1, E )

+l +6+�(i&1, E ) ln
e2F6+�(i, E )
6+�(i&1, E )

�2l6+�(i, E ) ln 1=0

and, thus, the entropy production is non-negative: 2i S(Ck : [Dj ])=
� dE si (k, E )�0.

Secondly, since the eigenvalues of the matrix [Pi, k] are }j=[1&2l+
2 - l +l & cos(?j�(N+2))] ( j=1,..., N+1) and |}j |�|}1|<1, one has

|(PM) i, k |�K |}1|M � 0 (M � �) (26)

with some constant K>0. Thus, the entropy production vanishes in the
fine-grained limit:

lim
M � �

2i S(Ck : [Dj ])=| dE lim
M � �

si (k, E )=0 (27)

Next, we consider the macroscopic limit, following ref. 6. Tracing back
the argument used to derive Eq. (21) and using Eqs. (19), (20) and (9), we
can rewrite the first term of (24) as

:
N

i=0

6+�(i, E )(PM) i, k ln
ai (E )2

6+�(i, E )

= :
|&M ,..., |&1

ak(E )[G+�(k, $M , E )&G+�(k, #M , E )]

_ln
$M&#M

ak(E )[G+�(k, $M , E )&G+�(k, #M , E )]

=& :
|&M ,..., |&1

_6+�(k, E )[$M&#M]&
Jk | k+1

l
[.k($M)&.k(#M)]&

_ln \6+�(k, E )&
Jk | k+1

l
.k($M)&.k(#M)

$M&#M + (28)
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The second term can be calculated in a similar way. By expanding the
resulting expression with respect to the ratio Jk | k+1 �(l6+�) up to the
second order and using (15) and the formula:

.k($m)&.k(#m)=
l

l & &l + (1&e2F(k&|&m)) P|&m |&m+1
} } } P|&1 k (29)

which follows from (10), we obtain

si (k, E )=
J 2

k | k+1

2l 26+�(k, E )
:

|&M ,..., |&1

__ :
N+1

|&M&1=&1

(.k($M+1)&.k(#M+1))2

$M+1&#M+1

&
(.k($M)&.k(#M))2

$M&#M &
+O \J 3

k | k+1

l 26 2
+�+

=
J 2

k | k+1 cosh2 F
l6+�(k, E )

:
N

j=0

e2F( j&k)(PM) j, k+O \J 2
k | k+1

l 26 2
+�+

=
J 2

k | k+1

l6+�(k, E ) {1& :
M

m=1

:
j=&1, N+1

(Pm) j, k=
+O \J 3

k | k+1

l 26 2
+�

,
FJ 2

k | k+1

l6+� +
(30)

where we have used: �N
j=0 (PM) j, k+�M

m=1 �j=&1, N+1 (Pm) j, k=1.
Although the higher order terms look like of order of J 3

k | k+1�[l 36 2
+�],

they are actually of order of J 3
k | k+1 �[l 26 2

+�] because of an extra factor
l from a .k-term. Since Pij{0 only for |i& j |�1, we notice that (Pm)&1, k

=(Pm)N+1, k=0 for all m�M, when the site k is sufficiently far from the
boundary. Thus, the leading term of si (k, E ) takes the phenomenological
expression J 2

k | k+1 �(l6+�) in the middle part of the chain and deviates
from it near the boundaries.(6, 8)

Finally, we consider the scaling limit in the sense of Bunimovich and
Sinai (BS), (15) where the lattice site n and time t are scaled respectively as
n=L!X and t=L{T and the limits L! � +� and L{ � +� are taken
while keeping the diffusion coefficient D=lL{ �L2

! constant. The field
strength per unit distance F#FL! , the probability flow per unit time per
energy j#Jk | k+1L{ , the probability density per energy ?+�#6+�L! are
of order unity and are smooth functions of X#k�L! . Note that, in ref. 9,
we considered another scaling limit following Vollmer, Te� l and Breymann
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(VTB), (7) where the time step { and lattice spacing d tend to zero while
keeping D=ld 2�{ constant. The two scaling limits look different, but are
mathematically equivalent via the replacements L{ W 1�{ and L! W 1�d.
Thus, the results of ref. 9 obtained in the VTB-scaling limit are valid also
in the BS-scaling limit.

Accordingly, we have

_i (X, E )# lim
L{ , L! � +�

D: fixed

L{L!si (k, E )=
j(X, E )2

D?+�(X, E )
(31)

where

j(X, E )=&D \2F?+�(X, E )+
�?+�(X, E )

�X + (32)

Note that the scaling limit is meaningful only when N>>1 and
0<<k<<N.

4. TRANSPORTS

Now we study mass and heat transports in the scaling limit. Since, as dis-
cussed in Section 2, the new phase-space coordinate E can be regarded as a
``kinetic energy,'' the argument E of ?+�(X, E ) and j(X, E ) can be regarded
as the local ``energy'' of the particle. Thus, p(X )#� dE ?+�(X, E ), =(X )#
� dE E?+�(X, E )�p(X ), jM(X )#� dE j(X, E ) and jE (X )#� dE Ej(X, E )
can be regarded, respectively, as the ``mass density,'' the ``energy per mass,''
the ``mass flow'' and the ``energy flow.'' Then, as shown in ref. 9, we have

jM(X )=&2DFp(X )&D
�p(X )

�X
(33)

jq(X )=&Dp(X )
�=(X )

�X
(34)

where jq(X )#jE (X )&=(X ) jM(X ). Note that p(X ) and =(X ) behave as
independent fields for arbitrary F since p(X ) and p(X ) =(X ) depend only
on � dE \\ and � dE E\\, respectively (for \\ , see Eq. (6)), and the quan-
tities � dE \\ and � dE E\\ are mutually independent.

Now, the relation (33) can be interpreted as a phenomenological rela-
tion between the mass flow and the mass density, namely the first term of
the right-hand side is a drift flow induced by the external field F and the
second term represents a diffusion flow obeying Fick's law. Also, since
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jE (X ) represents the energy flow and =(X ) jM(X ) corresponds to a energy
flow associated with the mass flow, jq of (34) can be interpreted as a ``heat
flow'' and, thus, Eq. (34) as a phenomenological law of heat conduction.
Now let us introduce here a spatially varying energy distribution: h(X, E )
#?+�(X, E )�p(X ).4 In terms of this energy distribution, Eqs. (31) and
(32) give the following expression of the entropy production density _~ i (X )
per unit time

_~ i (X )#| dE _ i (X, E )=
jM(X )2

Dp(X )
+Dp(X ) |

dE
h(X, E ) \

�h(X, E )
�X +

2

(35)

The first term agrees with the phenomenological expression due to the
mass transport.(7, 10, 17) In short, we have obtained Eqs. (33), (34) and (35)
which can be regarded as thermodynamical relations. In order to pursue
the analogy with thermodynamics, we introduce a quantity corresponding
to temperature. ``Temperatures'' at the left and right edges, T& and T+

respectively, are introduced by requiring the probability densities per
energy at both edges to have the canonical form:

?\(E )#a(E ) e&2n\F\\(E ) L!= p\

e&E�T\

z\

(36)

where n+=N+1, n&=&1, p+ ( p&) is the mass density at the right (left)
edge and z:=� dE exp(&E�T:) (:=\) are the partition functions. To
derive relations corresponding to linear nonequilibrium thermodynamics,
we assume that the temperature difference $T0#T+&T& is small enough
to retain the lowest order terms with respect to the temperature gradient.

In the lowest order in $T0 , ?\(E ) are

?\(E )&p\

e&E�T0

z0 {1\
$T0

2T 2
0

(E&(E) 0)= (37)

where T0=(T++T&)�2 is the average temperature, z0=� dE exp(&E�T0)
and ( } } } ) 0 stands for the average with respect to the distribution
exp(&E�T0)�z0 . Then, from (7), we have

?+�(X, E )&
e&E�T0

z0 {p(X )+
$T0

2T 2
0

�(X )(E&(E) 0)= (38)
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where the function �(X ) is given by

�(X )#( p+eFL+ p&e&FL)
e&FX sinh FX

sinh FL
& p&e&2FX (39)

for a system of length L#(N+1)�L! .
Now we introduce a function T (X ) corresponding to a temperature

field by requiring that h(X, E ) is a local equilibrium distribution: h(X, E )
=exp(&E�T (X ))�z(X ). In the lowest order in $T0 , Eq. (38) gives T (X )=
T0+�(X ) $T0 �[2p(X )]. And the energy per mass =(X ) becomes

=(X )=
1

p(X ) | dE E?+�(X, E )&(E) 0+
($E2) 0

T 2
0

(T (X )&T0) (40)

where $E=E&(E) 0 . Hence, the heat flow jq(X ) obeys

jq(X )=&*(X )
�T (X )

�X
with *(X )=Dp(X )

($E 2) 0

T 2
0

(41)

which can be interpreted as Fourier's law where *(X ) is a (position-depen-
dent) heat conductivity. On the other hand, with (38), Eq. (35) becomes

_~ i (X )=
jM(X )2

Dp(X )
+

*(X )
T 2

0 \�T (X )
�X +

2

(42)

which is the entropy production expected from thermodynamics.(10, 17) By
comparing (33) and (41), we notice that there is no cross effects between
mass and heat transports so that Onsager's relation holds trivially.

5. CONCLUSIONS

In the previous paper, (9) we introduced a conservative multibaker map
with energy. In the scaling limit, a Smoluchowski-type equation was
derived for a probability distribution function and the mass and energy
flows were calculated. We also constructed the nonequilibrium stationary
states under the flux boundary condition and we showed that the Gaspard�
Gilbert�Dorfman entropy production with respect to a relatively coarse
partition was non-negative and admitted an expression consistent with
thermodynamics in the scaling limit. Here, as a continuation of the
previous paper, we have shown that (i) the Gaspard�Gilbert�Dorfman
entropy production with respect to a partition into cells of arbitrarily small
size is non-negative for a stationary state induced by the flux boundary
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condition, (ii) this entropy vanishes in the fine-grained limit for finite
chains, (iii) it takes the phenomenologically expected value in the middle
of the chain and a lower value near the boundaries up to the second order
in Jk | k+1 , and (iv) it reduces to the standard thermodynamic expression
in the scaling limit in the sense of Bunimovich and Sinai.(15) Furthermore,
the analogy with thermodynamics has been completed by introducing a
variable corresponding to the temperature. By assuming, that the edges of
the chain are in equilibrium with slightly different temperatures, we have
derived a relation analogous to Fourier's law and we have recovered the
thermodynamic expression of the associated entropy production. Hence, as
in ref. 10, our model does describe mass and heat transports in a manner
consistent with thermodynamics.

The results on the entropy production can be summarized as an
equality with respect to the entropy production per energy si (k, E ):

lim
= � 0

lim
L{ , L! � +�

D: fixed

L!6+�

(L{Jk | k+1)2 [L{L!si (k, E )]=
1
D

>0 (43)

where the fine-grained limit = � 0 should be taken after the scaling limit.
This is a generalization of the result obtained in ref. 6 and it implies that
the fine-grained entropy production is an emerging property appearing in
the scaling limit.

Here, we would like to emphasize the role of the fractality of the dis-
tribution for finding a positive entropy production. This fractality is essen-
tial for our conclusions that would not hold if the distribution was regular.
Indeed, in Eq. (30), if the quotient (.k(')&.k('$))�('&'$) was constant
over the partitioning cell Dj , we would have the equality

.k($M+1)&.k(#M+1)
$M+1&#M+1

=
.k($M)&.k(#M)

$M&#M

the sum in Eq. (30) would vanish because

:
N+1

|&M&1=&1

(.k($M+1)&.k(#M+1))2

$M+1&#M+1

&
(.k($M)&.k(#M))2

$M&#M

=
.k($M)&.k(#M)

$M&#M

__ :
N+1

|&M&1=&1

[.k($M+1)&.k(#M+1)]&[.k($M)&.k(#M)]&=0
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and, as a result, the entropy production would also vanish. Therefore, the
fractality of the distribution is the very origin of the nonvanishing of the
fine-grained entropy production. Note that this fractality of the stationary
distribution appears in the scaling limit for area-preserving systems. For
finite chains, the stationary state measure & is very complicated and very
different from a uniform measure but it is still absolutely continuous with
respect to the Lebesgue measure so that the fine-grained entropy produc-
tion vanishes.

Beside the nonequilibrium stationary states, the time-dependent
properties of our model can also be studied such as the relaxation of the
phase-space probabilities toward the nonequilibrium stationary state. With
the aid of a method of ref. 18 (see also ref. 19), one can show that the dis-
tribution function G� +� of the nonequilibrium stationary state given by
Eq. (9) is approached when t � +� starting from the partially integrated
distribution of any initial measure which is absolutely continuous with
respect to the Lebesgue measure and possesses a density continuously dif-
ferentiable in !, according to:

G� t(n, !, ', E )&G� +�(n, ', E )= :
N+1

j=1
|}j |>*

}t
j bj (E ) #j (n, ')+$Gt(n, !, ', E )

(44)

where }j=1&2l+2 - l +l & cos(?j�(N+2))(<1), *=max(1&2l,
- l +l &), the j-sum runs over all j=1,..., N+1 satisfying |}j |>*, and the
function $Gt decays as |$Gt |=O(t2*t) uniformly with respect to n, ! and '.
In Eq. (44), the function #j (n, ') is defined as the unique solution of the
functional equation

#j (n, ')=

- l +l &

}j
#j \n+1,

'
l ++ , 0�'�l +

(45)

s
}j

#j \n,
'&l +

s ++
- l +l &

} j
sin \(n+2) ?j

N+2 + ,

l + �'�1&l &

- l +l &

}j
#j \n&1,

'&1+l &

l & +
+

s
}j

sin \(n+1) ?j
N+2 ++

- l +l &

}j
sin \(n+2) ?j

N+2 + ,

1&l & �'�1
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and the coefficient bj (E ) is given by

bj (E )=
&2

N+2
:
N

n=0
|

1

0
d#j (n, 1&!)[G� 0(n, !, 1, E )&G� +�(n, 1, E )] (46)

in terms of the initial distribution function G� 0 . Thus, for any partitioning
cell Dj , its measure &t(Dj ) at time t converges to &(Dj ) as t � �. Therefore,
the total coarse-grained entropy of the kth cell converges toward its value
(11) at the stationary state & with partition-independent rates, as far as the
system size N is finite and the sizes of the partitioning cells are nonvanish-
ing. Accordingly, Eq. (44) shows that the long-time relaxation of the
entropy and of its production toward their stationary values is controlled
by the decay rate &ln }1 which depends on the fundamental parameters of
the system but not on the partition. Note that the scaling limit is not
necessary to obtain the result (44) and that the coarse-grained entropy
production of the stationary state (24) is positive even for finite N provided
the partitioning cells are not too small. The same is true for the multibaker
maps under the flux boundary condition studied by Gilbert and
Dorfman.(8) We end by the remark that the extension of the present study
of entropy production to nonstationary states could be carried out along
the line of thoughts by Prigogine�Misra�Courbage(20) who introduced a
monotonically decreasing negative-entropy-like quantity for Kolmogorov
systems (which include the baker map), or along the one by Nicolis and
coworkers(21) who proved a H-theorem for a coarse-grained entropy based
on system-specific Markov partitions. This and the extension to con-
tinuous-time dynamical systems will be studied elsewhere.
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